习题一(A)
1t221t1,(6)2t1t22t2221t2(1t)4t1
(1t2)21t21t2 (7)
1logba0
logab12,(3)-7
(4)0
k344,1k0k2k0,k0或者k1.
0k131x5,4x02x24x0,x0且x2.
10x8,(1)4 (2)7 (3)13
n(n1) 210, 列号为3k42l,故k、l可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5.
(4) N( n(n-1)…21 )=(n-1)+(n-2)+…+2+1=
12,(1)不等于零的项为a13a22a34a411
(2)a12a23a34...an1,nan1(1)N(234...n1)n!(1)n1n! 13,(3)
342153521534215100061230c2c1r1r26123000
2809229092280921000280921000 (4)将各列加到第一列,
17,(1)从第二行开始每行加上第一行,得到
11111111111111111111022200220002....8.
(2)r4r3,r3r2,r2r1…
1 / 22
(3)各列之和相等,各行加到第一行… 18,(3)
20,第一行加到各行得到上三角形行列式,
21,各行之和相等,将各列加到第一列并且提出公因式(n1)x
11x0xxxxxxxx0xxx (n1)x11x0从第二行开始各行减去第一行得到
22,最后一列分别乘以a1,a2,...an1再分别加到第1,2,…n-1列得到上三角形行列式
23,按第一列展开
24,将第二列加第一列,然后第三列加第二列,….第n列加第n-1列,最后按第一行展开。
(1)n(n1)a1a2...an.
125,(1)
133221325r2r1r4r3120130201305(1x2)(4x2)0
12x22201x219x204x2(2)各行之和相等…
(3)与22题类似…
(4)当x0,1,2,3,...n2时,代入行列式都会使行列式有两行相同,所以它们都是方程的根。
1040140140211228,A41A42A43A44(6)212(6)03018
06001111111111129,A11A12A13A14111cbb其中1,3两行对应成比例,所以为零.
bbbdaddbc32,从第二行开始每一行乘以(-1)加到上一行然后按第一列展开 33,按第一列展开 34,原方程化为
2 / 22
11002x0012x21312x2(x2)(x24)…. 21x2xx1xx0111x1r1r2r3r4100y1y10101011xy1x1111x135,
111y111 xy01 y001x2y2=0
11100110011y0111x1010x011y0y解得x0或者y0
1136,
1112481113(21)(11)(12)(31)(32)(31)48(范德蒙行列式) 1912737,解 40,(3)D=63,D1=63,D2=126, D3=1
(6)D=20,D1=60,D2=-80, D3=--20,D4=20
232342,∵1241243330
18220558201822 ∴原方程仅有零解。
k11k2322022106943,令1k1211k10(k2)(k1)6k23k40, 11 得 k1或k4;故当k1或k4时原齐次方程组有非零解。 44,原齐次方程组的系数行列式
即当k1且k2时原齐次方程组仅有零解。
习题二(A)
-1315 82822,(1)3AB379133 / 22
141387 -25-25 (2)2A+3B16523111 4040(3)xBA1335 (4)由(2A—Y)+2(B—Y)=0得 3Y=2(A+B)
5533220202∴ Y(AB)331133101033403223320224 32x2u33,因为A2BCx2y72v40得方程组 yv4x2u30x2y7解得x=-5,y=-6,u=4,v=-2 2v40yv401104-5,(2) 14-3-123 14 246 (3)369-105-117=-629 15 (7)16102532ac25ac4611,(1)设X=,则 bd13bd212a5b2c5d46a3bc3d21,得到方程组 a22a5b4解得, b0a3b24 / 22
2c5d-6c-23与解得.
c3d1d82-23. X=80--2 -45-2 (2)X=-97-4x111x2,211y3, y (3)设X=z111z6xyz2x11. 3 2xyz3,解得y3于是X=xyz6z22ab11abab1113.设所有可交换的矩阵为X则01cdcd01, cdabacbdaabab解得从而. Xcdccd0ac0da111111111116,(3)因为,所以0000. 00000011111112 (4)因为010101用数学归纳法可以推得 01111n . 0101n2n11111122112 (5)因为11112211故可以推出 11111111n111...2 111111. 11n220,mA(m)3Am3mm4
5 / 22
21,2AAT2mAT(2m)nAT2nmn1.
28,因为(ATA)TAT(AT)TATA,所以AAT为对称矩阵.
因为(AAT)T(AT)TATAAT,所以AAT为对称矩阵.
A131, (1),原矩阵为A3A2B1A40B2A1B1B4A3B121A1B2A2B4,其中 12A3B2A4B4321202A1B111111210101A1B2A2B4011112; 110A3B1033;
11A3B2A4B40321022;
0aI(3),记原矩阵为Ia0100aca00cbd100IcI,则有 bI0dI0ac. 0cbd33,A34A12A2A34A1A32A2A3
abab1db34,(2)因为. adbc0,所以adbccacdcd143143,A1153. 153(4)因为A1,故可逆.A*16411(6)因为Aa1a2...an0,故可逆. Aiia1a2...ai1ai1an(i12...n),
6 / 22
a2a3...an A*011a011,Aa1a2...an10. 1an02546354622340, (1)X. 1321122108113111210432(2X1251111110113222111452) 432974125311220111121(3)X21132111612131301321133. 6621242, 由AXIA2X得到AXXA2I,(AI)X(AI)(AI),
201. XAI14002244, 两边同乘以(IA)(IA)1(IA)(IAA2...Ak1)IAkI. 45, 由A22A4I0得到(AI)(A3I)I,于是AI可逆并且 (AI)1A3I. 51, 因为A12, (3A)12A*112216. A2AA1A1()3A133327152, 2(ATB1)12B(A1)T(2)3BA1(8)312.
253, (3),初等行变换得到
7 / 22
13131010000001. 13 (6),21050100, (1)
101021100143r2r3r44r2010153, 011011rr1r330011640011223143153. 110所以 1211110(4), 00100010003571000101230100012001000010001001000010000110020131101230100 012001000100011311200121, 001200013571311200121123. 0012012001000141412004100255, (1),, 615820040154015402 XA1B. 5411111111101302520016 0252(2), 1013012201221009100901014, 0016 0101400168 / 22
9. 14 XA1B656,
101301101301100522110110011211010432, 012014001223001223522B(A2I)1A432. 223123457, (1) 12451234041111012,秩为2. 0000 (3)
11210210210122420110000110000001033061100410400003001303001000300100 秩为3. (4)秩为3.
11158, 初等行变换得到121111010,因为秩为2必有 101230 10, 1.
11111111059,112a123010a100 a100001 当a1,r(A)2;当a1,r(A)3.
11212160, A1a211110a142, 31b04b64因为r(A)2,所以第二第三两行成比例从而得到
4a1b42解得a1, b2 9 / 22
210001040000习题三(A)
1,
用消元法解下列线性方程组 2x1x23x33(1)3x1x25x304x1x2x33
x13x213x36解
2133131361313613(A,b)31501801315008344113411301327013131362133530729150713136131363136 01530153101530012120110011,回代, 0066000110000131360231001015310153010200110110011,方程组有唯一0000000000000x11解:x22
x31x12x2x3(2)x41x12x2x3x41
x12x2x35x4512111解:(A,b)1211112111121110002200022,
12155000000010系数矩阵的秩为2,而增广矩阵的秩为3;方程组无解.
x1x2x3x41 (3)x1x2x3x40
x2x11x232x42 解: (A,b)=
10 / 22
13653532729151100001100001112xxxx2112212,得到同解方程组 2xx1xx13434022设x2c1,x4c2,则得到一般解为
x1x23x4x50xx2xx01234 (6)
4x2x6x3x4x0234512x14x22x34x47x50解:A=
1000111111120100103000000370651106,得到同解的方程组 1001300000177xxx5xxx0311365655, xxx5 令x3c1,x5c2, xxx0223356611xxx043x54357xcc2116xc5c2162得到x3c1
1x4c23x5c22,
确定a,b的值使下列线性方程组有解,并求其解
11 / 22
ax1x2x31(2)x1ax2x3a
2x1x2ax3aa11解: 方程的系数行列式D=1a1(a1)2(a2)
11a当a2且a1时,D0,方程有唯一解,
1D1aa211a111(a1)2, aa1(a1)2(a1),D21a1a1a21ax12aa111D31aa(a1)2(a1)2,于是得x2
2a11a21+2a+a2x32a当a1时,方程组为x1x2x31,x1=-x2-x3+1,方程组有无穷多解,
x1c1c2+1; x2c1xc232x1x2x31当a2时,方程组为x12x2x32,其增广矩阵为
xx2x431221112111(A, b)=12121212,r(A)=2,r(A,b)=3,方程组11240003无 解.
ax1bx22x31补充,(b1)x2x30
axbx(1b)x32b231b21ab21a0b1 0b11010解:(A,b)b1b32b01b22ba012 / 22
①当a0,b1时有唯一解,此时,增广矩阵为
5b53b5bxab0a001a(1+b)1+b1+b2-2b-2010,解为x-20b10; 21+b1+b1+b-2+2b-2+2b0001-2+2b01x31+b1+b1+b1cx1a②当a0,且b=1时,有无穷多解,x2c
x03x1c且b=1有无穷多解,x21 ③当a0,x03x1c1且b=-1有无穷多解,x2 ④a0,3x303, (1) 31225344(23,18,17) (2) 512234(12,12,11)
4,(1)=-(1,5,2,0)(3,5,7,9)(4,0,5,9),
1351127 (2)=(35)(3,5,7,9)(1,5,2,0)(7,5,,)
222226,(1)(a)设k11k22k33,
得k1(1,0,1)k2(1,1,1)k3(0,1,1)(3,5,6)
110k13k5, 011 化为方程组2111k36∴ 11114293
T (b)对矩阵12T3TT进行初等行变换:
13 / 22
1011110113105600100011114可得 9(2) 212534. 9,由题设得到
1211111111111111,∴111=22220111333111312 即111111112,223,313. 222222121200112 2312102123123510,(1)矩阵为02502501,可知 21020250003212 ;线性相关. 11 (2)矩阵为31 a11a225231242102701030012101220030310023,线性无关. 1011,由对应向量构成的矩阵的行列式等于
ann0,线性无关.
12101110, 12,由对应向量构成的矩阵2231303201130,∴1,23 线性相关. 00∵ 1113, 证明:令k11k2(12)k3(123)...ks(12...s)0, 整理得到(k1...ks)1(k2...ks)2...kss0.
因为1,2,...,s线性无关, 所以有
14 / 22
k1...ks0k10k...k0k022s, 解得, 从而向量组1,12,...,12...s............................ks0ks0线性无关.
k2114,令2k0k2k60,k=3,-2 111当k3且k-2时,线性无关;当k=3或-2时,线性相关.
16,(1)对矩阵ATTT1T234施以初等行变换,得到 100210020101010100130013, 11100000∴1,2,3是极大线性无关组,421-233
(2)对矩阵ATTTT1234施以初等行变换,得到
1,2,3是极大线性无关组, 41243
17,对AT1T2T3T4施以初等行变换,得到
115111511151(1)112372027401 3181213970274000414800000010312 01722,∴ 1,2是极大线性无关组;000000003732122,4122
15 / 22
并且1111(2)2131143235563111431022620105011317022620021100001231 0000 1,2是极大线性无关组;并且3212,4132,5212 20,(1)对系数矩阵进行变换得
1247124710000510150120得方程组 A2121023124000001x100x10x10x222.V即为基础解系. x22x30x22x3 令x31, 得1x0x0x3144x0401-21-111-21-1121-12-305-34-5 (2) (Ab)3-2-11-204-44-502-51-220-1-101-21-11011000-84-500000017-281510-28得方程组
1501-2800000010 00171x-xxx-4511282x1115 x2-x4x5.令4得到x2-:
228x50115xxxx323248571827x181582x405 再令得到x2于是基础解系为1,2.
8x1515825x01380116 / 22
111-21111-2121-11105-333 (3) (Ab)17-55509-6663-12110552210111100111101 0011100002110000100000得到方程组 00110x100x02令x51得x41,得到基础解系为0. x031xx54123,对系数或增广矩阵进行变换得
21112047202103001201(1)01360136002225000000015012得方程组 1200x115c2x15x02x15x1144x24c2 x212x40x212x4 ,令x42c得到.
x4cx2x0x2x34433x42c1524基础解系为vc,其中c为任意常数.
4213(2)05112112431171013226230311201010000110201700 6230010 0000151600000得方程组 1026230100017 / 22
x1x45x516x1x45x516x22x46x523x22x46x523, x0x033x1x45x5对应的齐次线性方程组为x22x46x5
x03x116x232x40 令,得特解x30,
x50x04x50x11x22x41 再令得x30,
x50x14x50x1515x6262x40 ,得x30,基础解系为0,0
x51x010401x5116152326 原方程组的通解为U0c10c20,其中c1, c2为任意常数.
0100011313(Ab)=1-2 (3),
1-41252111-4011300-21-1r2r1,r3r10-5-1-13r4r1,r5r11-130-7-11-10-15-401-321-2-43-12
-45-12-431-2得到方程组
18 / 22
11-2x-x510211x1x-1225=,特解,基础解系0=2, 0x3011-x=-1x-10452211-20112于是全部解是0+c(cR). 011-02124, (A,b)1111131112211112110-11-22301-1-20 331211210-10-11-01-0202--(31)0-(-1)(+2)(31)00
讨论如下:
(1) 当=-2时,方程组无解; (2) 当-2且-1时有唯一解; (3) 当时有无穷多解:此时方程组为
x1+x2+x3-2.基础解系为
-1-1-21,0,特解为0,全部解为 010-2-1-10+c1c0(c,c为任意实数). 121200125,将增广矩阵化为T阵,得
19 / 22
100011100001100i5i100110000111a10a20a30a4a5011000011000011000010a2a3,可知 a4i5aii1a1当且仅当ai=0时方程组有解;一般解为
x1a1a2a3a4cx1a1a2a3a4x5x2a2a3a4cxaaax22345即(c为任意实数) x3a3a4cxaax3453xac44x4a4x5x5c习题四(A)
1,(1)由IA211(2)210得到特征值为11,23. 2 以11代入,得方程组IAX1211x1-x1x20,, 012x2-x1x201c的全部特征向量. 2(c20)是对应于特征值2313563561 111 (2)由IA221210359(2)(2)2=0,111 (2)1,2,32, 010 即x12x2x30,
是对应于特征值1,2,32的全部特征向量.
-1-1-1-1-1-1-1-1-1111-1111(3)IA -11110-220-11110-20220 / 22
(2)2-1-3-1-1-111100001001(2)3(2)=0
特征值为1,2,32,42.
111100, 以1,2,32代入得基础解系是,010001111100c1c2c3(c1,c2,c3不全为零). 01000111得基础解系, 以4-2代入,1111对应于特征值42的全部特征向量是c4(c40).
1101010210(4), IA01100010
(1)(21)(1)2(1)0, 得到 1,21,31,
01,0,对应的全部特征向量为 1 当1,21,x1x3,得到基础解系0101c0(c,c不全为零), c112120121 / 22
x1x3当31时, 解方程组得到基础解系
x0211, 全部特征向量为c0(c0). 0 33113,由题设,AX0X
(1)(kA)Xk(AX)(k0)X,即kA的特征值为k0. (2)由A可逆,00 A1的特征值为01.
(3)(IA)XIXAXX0X1.X0X(10)X IA的特征值为10. 4,设AX0X, 5, 以0代入
xIA0202020x2000030300,得到x2. 022代入IA0222020 230002230 (3)222(3)(4)0,解得 2 10,23,34. 所以其他特征值为23,34.
8,如果A可逆,则A1存在,并且A1(AB)A(A1A)BABA ∴ AB
[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]
BA.
22 / 22
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- howto234.com 版权所有 湘ICP备2022005869号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务