第一课时
一、课题 §3.4去括号(一) 二、教学目标
1、使学生初步掌握去括号法则;
2、使学生会根据法则进行去括号的运算;
3、通过本节课的学习,初步培养学生的“类比”、“联想”的数学思想方法
三、教学重点和难点
重点:去括号法则;法则的运用 难点:括号前是负号的去括号运算 四、教学手段
现代课堂教学手段 五、教学方法 启发式教学 六、教学过程
(一)、复习旧知识,引入新知识 请同学们看以下两题:
(1)13+(7-5); (2)13-(7-5) 谁能用两种方法分别解这两题? 找两名同学回答,教师板演 解:(1)13+(7-5) =13+2 =15;
或者 原式=13+7-5 =15. (2)13-(7-5) =13-2 =11;
或者 原式=13-7+5 =11.
小结 这样的运算我们小学就会了,对吗?那么,现在,若将数换成代数式,又会怎么样呢?再看两题:
(1)9a+(6a-a); (2)9a-(6a-a)
谁能仿照刚才的计算,化简一下这两道题? 找同学口答,教师将过程写出 解:(1)9a+(6a-a) =9a+5a =14a;
或者 原式=9a+6a-a =14a. (2)9a-(6a-a)
=9a-5a =4a;
或者 原式=9a-6a+a =4a. 提问:
1、上述两题的解法中第一种方法和第二种方法区别在哪里? 2、我们是怎么得到多项式去括号的方法的?引导学生回答“是从数的去括号方法得到的”,教师指出这种方法叫“类比” 3、第(1)小题与第(2)小题的去括号有何不同?引导学生进行观察、比较、分析,初步得出“去括号法则”
(二)、新知识的学习 去括号法则:
括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号; 括号前是“-”号,把括号和它前面的“-”号去括,括号里各项都改变符号
此法则由学生总结,教师和学生一起进行修改、补充 为了便于记忆,教师引导学生共同完成下面的顺口溜:
去括号,看符号:是“+”号,不变号;是“-”号,全变号 (三)、新知识的应用 例1 去括号: (1)a+(-b+c-d); (2)a-(-b+c-d) 解:(1)a+(-b+c-d) =a-b+c-d; (2)a-(-b+c-d) =a+b-c+d
说明:在做此题过程中,让学生出声哪念去括号法则,再次强调“是+号,不变号;是一号,全变号”
例2 去括号:
(1)-(p+q)+(m-n); (2)(r+s)-(p-q)
分析:此两题中都分别要去两个括号,要注意每个()前的符号另外第(2)小题(r+s)前实际上是省略了“+”号
解:(1)-(p+q)+(m-n) =-p-q+m-n; (2)(r+s)-(p-q) =r+s-p+q
例3 判断:下列去括号有没有错误?若有错,请改正: (1)a2-(2a-b+c) =a2-2a-b+c; (2)-(x-y)+(xy-1) =-x-y+xy-1.
分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变.
解:(1)错
正确的为:原式=a2-2a+b-c;
(2)错.
正确的为:原式=-x+y+xy-1
例4 根据去括号法则,在___上填上“+”号或“-”号: (1)a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;
(3)____(a-b)___(c+d)=c+d-a+b 分析:此题是先知去括号的结果,再确定括号前的符号,旨在通过变式训练,训练学生的逆向思维
例5 去括号-[a-(b-c)]
分析:去多重括号,有两种方法,一是由内向外,一是由外向内 -[a-(b-c)]
解法1:原式=-(a-b+c) =-a+b-c; 解法2:原式=-a+(b-c) =-a+b-c
例6 先去括号,再合并同类项:
11(1)x+[x+(-2x-4y)];(2)(a+4b)-(3a-6b)
23分析:第(1)小题的方法例5已讲,只是再多一步合并同类项,第(2)小题中( )前出现了非±1的系数,方法是将系数及系数前符号看成一个整体,利用分配律一次去掉括号
解:(1)x+[x-(-2x-4y)] =x+(x+2x+4y) =x+x+2x+4y =4x+4y;
11 (2)(a+4b)-(3a-6b)
231 =a+2b-a+2b
21 =-a+4b
2(四)、小结
1、今天,我们类比着数的去括号法则,得到了多项式的去括号法则 2、大家应熟记法则,并能根据法则进行去括号运算现在,大家再一起跟着我说一遍:去括号,看符号:是“+”号,不变号;是“-”号,全变号 七、练习设计
化简:
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b); (3)a-(2a+b)+2(a-2b); (4)3(5x+4)-(3x-5); (5)(8x-3y)-(4x+3y-z)+2z;
1(6)-5x2+(5x-8x2)-(-12x2+4x)+;
5(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2); (9)2a-3b+[4a-(3a-b)];(10)3b-2c-[-4a+(c+3b)]+c. 八、板书设计
§3.5去括号(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5 (二)观察发现 (四)课堂练习 练习设计
九、教学后记
1通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则这样的设计起点低,学生学起来更自然,对新知识更容易接受类比是一种重要的数学思想方法,值得引起注意另外,这个设计也体现了“温故而知新”的学习方法和“以旧引新”的教学设计原则
2在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣
3本设计中,安排了例1到例6的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维
第二课时
一、课题 §3.4去括号(2) 二、教学目标
1、使学生初步掌握添括号法则;
2、会运用添括号法则进行多项式变项;
3、继续学习“类比”的方法;理解“去括号”与“添括号”的辩证关系 三、教学重点和难点
重点:添括号法则;法则的应用
难点:添上“-”号和括号,括到括号里的各项全变号 四、教学手段
现代课堂教学手段 五、教学方法 启发式教学 六、教学过程
(一)、复习旧知识,引出新知识 1、提问去括号法则 2、练习去括号:
(1)a+(b-c); (2)a-(-b+c); (3)(a+b)+(c+d); (4)-(a+b)-(-c-d); (5)(a-b)-(-c+d); (6)-(a-b)+(-c-d)
3、上节课,我们学习了去括号,在计算中,有时候是需要去括号,有时候又需添括号,比如下面两题:
(1)102+199-99; (2)5040-297-1503 怎样算更简便?
找学生回答,教师将过程写出来
解:(1)102+199-99 (2)5040-297-1503
=102+(199-99) =5040-(297+1503) =102+100 =5040-1800 =202; =3240 仿照数的添括号方法,完成下列问题: a+b-c=a+( );a+b-c=a-( )
引导学生通过类比数的加括号方法,填出括号里的各项,进而总结添括号法则
(二)、新知识的学习 添括号法则:
添上“+”号和括号,括到括号里的各项都不变号; 添上“-”号和括号,括到括号里的各项都改变符号; 此法则让学生自己总结,教师进行修改、补充 (三)、新知识的应用
例1 按要求,将多项式3a-2b+c添上括号: (1)把它放在前面带有“+”号的括号里; (2)把它放在前面带有“-”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a-2b+c=+( )=-( )的形式,再让学生往里填空,特别注意,添“-”号和括号,括到括号里的各项全变号
解:3a-2b+c=+(3a-2b+c)=-(-3a+2b-c)
紧接着提问学生:如何检查添括号对不对呢?引导学生观察、分析,直至说出可有两种方法:一是直接利用添括号法则检查,一是从结果出发,利用去括号法则检查肯定学生的回答,
并进一步指出所谓用去括号法则检查添括号,正如同用加法检验减法,用乘法检验除法一样
例2 在下列( )里填上适当的项:
(1)a+b+c-d=a+( ); (2)a-b+c-d=a-( ); (3)x+2y-3z=2y-( ) (4)(a+b-c)(a-b+c)=[a+( )][a-( )]; (5)-(a3-a2)+(a-1)=-a3-( ) 本题找学生回答
解:(1)原式=a+(b+c-d); (2)原式=a-(b-c+d); (3)原式=2y-(3z-x);
(4)原式=[a+(b-c)][a-(b-c)]; (5)原式=-a3-(-a2-a+1)
例3 按下列要求,将多项式x3-5x2-4x+9的后两项用( )括起来: (1)括号前面带有“+”号; (2)括号前面带有“-”号 解:(1)x3-5x2-4x+9 =x3-5x2+(-4x+9); (2)x3-5x2-4x+9 =x3-5x2-(4x-9).
说明:1.解此题时,首先要让学生确认x3-5x2-4x+9的后两项是什么——是-4x、+9,要特别注意每一项都包括前面的符号
2.再次强调添的是什么——是( )及它前面的“+”或“-”. 例4 按要求将2x2+3x-6
(1)写成一个单项式与一个二项式的和; (2)写成一个单项式与一个二项式的差 此题(1)、(2)小题的答案都不止一种形式,因此要让学先讨论1分钟再举手发言通过此题可渗透一题多解的立意
解:(1)2x2+3x-6 =2x2+(3x-6) =3x+(2x2-6) =-6+(2x2+3x); (2)2x2+3x-6
=2x2-(-3x+6)
2
=3x-(-2x+6) =-6-(-2x2-3x) (四)、小结
1、这两节课我们学习了去括号法则和添括号法则,这两个法则在整式变形中经常用到,而利用它们进行整式变形的前提是原来整式的值不变
2、去、添括号时,一定要注意括号前的符号,这里括号里各项变不变号的依据
七、练习设计
1、用括号把mx+nx-my-ny分成两组,使其中含m的项结合,含n的项结合(两个括号用“+连接)
2、在多项式m4-2m2n2-2m2+2n2+n4中添括号:
(1)把四次项结合,放在前面带有“+”号的括号里; (2)把二次项结合,放在前面带有“-”号的括号里 3、把多项式10x3-7x2y+4xy2+2y3-5写成两个多项式的和,使其中一个不含字母y
14、把三项式-x2+x写成单项式与二项式的差
311115、把b3-b2+b-写成两个二项式的和.
2346八、板书设计 §3.5去括号(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例4、例5 (二)观察发现 (四)课堂练习 练习设计
九、教学后记
1、去括号和添括号是本章的难点,而添括号难于去括号,添“负号和括号”又难于添“正号和括号”,因此,本章的最难点在本节为了让学生学起来更觉自然,降低难度,在引入部分,仍然采用了“以旧引新”的办法,即通过复习小学学过的简便运算,引起学生对添括号的注意,而后,进一步抽象,将数换成字
母,让学生在刚才运算的基础上,解决字母的添括号问题最后,仿照去括号法则,归纳、概括出添括号法则
2、为了让学生充分地意识到,添的不仅仅是括号,还包括前面的正号或负号,因此,在总结法则时,措词与课本略有不同(见教学设计)以更利于学生将括号及括号前的符号看成一个整体
3、在教学中,要使学生认识到,添括号和去括号是两个相反的过程,因此可以用来互相检验,就如同加法与减法,乘法与除法的关系一样这样可使知识前后呼应、浑然一体.
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- howto234.com 版权所有 湘ICP备2022005869号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务