__《博弈论》课程论文 _____课程号:1230060
_荟杨任课教师 邵慧燕 成绩 ____名论文题目:(可指定题目,也可说明题目范围。) 姓___题目范围:生活中的博弈 ___58论文要求:(对论文题目、内容、行文、字数等作出判分规定。) 5 01下21以90线1. 论文题目:准确得体,简短精炼,醒目 10分 0此2_在__写2. 摘要:文字简练,字数不超过正文的5%;关键词不少于三个,号字学文关键词之间用分号间隔 10分 将本专_须__生_学3. 正文:内容充实,论据充分、可靠,论证有力,主题明确语言流4 0 9 0 畅,条理清晰,字数不少于3000字 70分 _线__封_级密4.字体:摘要、关键词宋体5号字; 班 _ _ 题目黑体三号字;正文宋体四号字 10分 _ _ _ _ 学 法 _ _ 教师评语: _ _ 业 专 _ _ _ _ _ 院 学 法 教师签字: _ _ 院 年 月 日 学
正文
生活中的博弈
摘要:用一句俗话说:人在江湖,身不由己。当我们面临纷杂的社会生活,面临着诸多的选择,
我们都不可避免的要卷入到一场场“博弈之战”中去,无论你愿不愿意,都无法逃避。在学习了选修课的“博弈论”基础的知识后,竟然会很容易的发现,博弈如同空气般,围绕在我们身边,无处不在。
关键字:博弈;实例;运用
一、博弈的概论
什么是博弈?古语有云,世事如棋。生活中每个人如同棋手,其每
一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互
揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系
统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响
中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈
如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻
辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了
赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还
得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法„
面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开
1
始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、在作祟?当然!一定程度上,你大脑有意识无意识地选择做不做梦,这可能就是一个混沌的博弈问题了。大到美日贸易战,小到今天早上你突纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,
并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对於每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在於,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。 二、生活中博弈论的实例
在生活中博弈的现象比比皆是,或许你很难想象,自己一天24小时,甚至包括睡觉的时间在内,你都无法逃避博弈这个问题。生活中的大小事怎么个博弈法,下面的内容将娓娓道来。而说到睡觉,难道也有博弈
然生病,都有博弈在其中。可能有人会疑问,贸易争端用博弈论来分析是可以的,但对自己生病也可以用博弈论来理解就有点不可思议,因为自己就一个人,和谁进行游戏?
实际上,并非只有一个人,还有一个叫做“自然”(Nature)的参与者。“自然”可以理解为无所不能的上帝,上帝现在有两种策略,让人生病或不生病。人一旦生病,就不得不根据生病的信息判断上帝的策略,然后采取对应的策略。上帝采取让人生病的策略,人就采取吃药的策略
来对付;上帝采取不让人生病的策略,人就采取不予理睬的策略。这正是一场人和上帝进行博弈的游戏。
“自然”是研究单人博弈的重要假定 然而,生活中更多的游戏不是单人博弈,而是双人或多人的博弈。比如,某一天你觉得应该是你太太的生日,但又不能肯定:如果是太太的生日的话,你可以送一束花,太太会特别高兴;你不送花,太太会埋怨你忘了她的生日;如果不是太太的生日的话,你可以送太太一束花,太太感到意外的惊喜;你不送花,结果生活同往常一样。在这个博弈里,我们看到,“自然”可以有两种策
略:确定今天是太太的生日或确定今天不是太太的生日,但不论“自然”采取何种策略,你的最好行动都是买花。 “家家有本难念”,就是司空见惯的夫妻吵架也是一场博弈。
2
在竞争激烈的商业界,博弈就更为常见。比如两个空调厂家之间的价格战,双方都要判断对方是否降价来决定自己是否降价,显而易见,
样的威胁往往是不可信的。对爱情执着的聪明女儿会置父母的不可置信的威胁于不顾,继续与男友交往甚至最终与之结婚,父母最后也会承认
厂家之间的博弈目标就是尽可能获得最大的市场份额,赚取最多的收益。那个当初他们并不喜欢的女婿。这个结果便是剔除了不可置信的威胁后事实上,这种有利益(或效用)的争夺正是博弈的目的,也是形成博弈的基础。经济学的最基本的假设就是经济人或理性人的目的就是为了效用最大化,参与博弈的博弈者正是为了自身效用的最大化而互相争斗。参与博弈的各方形成相互竞争相互对抗的关系,以争得效用的多少决定胜负,一定的外部条件又决定了竞争和对抗的具体形式,这就形成了博弈。
三、如何运用好博弈论
在我国传统文化中,包含有许多精妙的博弈策略。许多成语及成语典故,就是对博弈策略的令人叫绝的运用和归纳。如:围魏救赵、背水一战、暗渡陈仓、釜底抽薪、狡兔三窟、先发制人、借鸡生蛋等等。当然,博弈策略的成功运用须依赖一定的环境、条件,在一定的博弈框架中进行。
在博弈中,人们经常采用威胁策略,但其他博弈方也会采取对威胁的辨别和反威胁策略。经济学家泽尔腾就将不可置信的威胁剔除出去,解决了一个博弈中可能存在多个“纳什均衡”的问题,从而使人们能方便地预测博弈的结果。举一个通俗的例子来说,父母不同意女儿所交的男友,威胁女儿说:“如果你再同他交往,我们就与你断绝关系。”但这
的“纳什均衡”,“博弈论”中称其为“子博弈精炼纳什均衡”。
“博弈论”研究还发现,在重复博弈中,如果博弈的次数是无限的,博弈方会选择相互合作的策略。
在博弈中,人们掌握的信息经常是不完全的,这就需要在博弈进行过程(即动态博弈)中不断地收集信息、积累知识、修正判断。成语故事“黔驴技穷”实际上就包含了一个不完全信息动态博弈。老虎吃掉毛驴的策略,在“博弈论”中就是所谓的“精炼贝叶斯均衡”。人们常提到“上有政策、下有对策”,其实是对管理者与被管理者之间的动态博弈的一种描述,面对上边的政策,下边寻求对策是正常的、必然的。从“博弈论”的角度讲,上边的政策制定必须在考虑到下边可能会有的对策的基础上进行,否则,政策就不会是科学、合理的。
生活中无处不存在博弈论,只有好好运用它,它才能体现它的价值,发挥它的作用。我们的生活真的就是跟博弈问题息息相关了。而在这样一个复杂的博弈战场上,我们怎么能使得自己在博弈场上获得最大的利益就是一门很大的学问了。
3
《生活中的博弈论》如何理解“风险越高,收益越高”
在投资理财中,有这样的流行观点:“风险越高,收益越大。”换句话说,就是人们为了获得更高的利益愿意承担更大的风险。从另一个方面来看,就是所承担的风险具有一定的价值。这就是人们常说的“风险价值”。
在实际生活中,我们每一个人对未来所作的决策都不可能百分之百地
准确。未来的变化是不确定的。对于未来变化的不确定性,有两种情况:其一,未来的变化具有统计特征,可以通过统计方法来分析,比如前面提到的赌博;其二,未来变化是混沌的,无法通过统计方法来分析。风险则是指可以通过统计方法来处理的未来收益或损失的不确定性。
未来的风险既可能是发生危险与损失,也可能是获得机会与好处。我们来看这样的一个随机数集合{19,16,21,24,24,25,13,19,23,17,18,15,14,17,18,14,18,19,20,19,19,19,24,20,19,18,26,23,27,18,25,15,22,23,26,20,18,22,19,22,16,17,15,19,20,20,19,27,15,18}。这个集合中共有50个数字。这个数据集合的平均值是所有的20,方差是3。
如果这个集合是你作某个投资的收益各种可能回报,那么你这项投资的平均收益就是20万元,而未来可能的收益是围绕着20万元这个平均收益上下波动的。方差则是衡量波动幅度大小,方差越大,波动的幅度就越大,方差越小,波动幅度越小。
我们再来看这样一组投资收益的数据{18,15,20,18,20,18,16,18,21,17,15,17,14,13,13,19,17,17,15,17,12,20,16,13,20,13,13,17,16,17,16,24,17,17,19,15,18,18,20,
11,18,17,16,14,17,19,17,14,16,14,31}。这组数据的平均收益是16万元,方差也是3万元,方差和前一组数据相同。很明显,在方差相同的情况下,平均收益越高,波动的程度就越小。
为了区分这种波动程度的不同,我们又引入了变异系数的概念,变异系数=方差
4
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- howto234.com 版权所有 湘ICP备2022005869号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务