一、解:
由A,B的对称性,不妨以A为标准进行讨论,
ln(ee) 记Ilimx0AxBx(1)A0时,对任意B,则I (2)A0时,若B0,则I
若B0,则Iln2 若B0,则I0
(3)A0时,若B0,则I
若B0,则I0 若B0,则I
二、解:
11(1)|f(x)f(0)||xsin||x||sin|
xx故欲使:0,0,当|x0|,s.t|f(x)f(0)|,只有当0才可,故,当0时f(x)在x0处连续
1xsin0f(x)f(0)1x (2)x1sin x0x0xf(x)f(0)1要使f(x)在x0处可导,即lim存在,亦即limx1sin存在
x0x0x0x11sin在x0时是有界量,故只有limx1sin0才可,即101
x0xx从而1时,f(x)在x0处可导
11111 (3)当x0时,f(x)x1sinxcos(2)x1sinx2cos
xxxxx由(2)知道,若f(x)在x0处可导,则必有f(0)0 同样讨论,只有当2时,f(x)在x0处连续 三、证明:由于
yyxyyxylnlnylnylnxxlnyylnx xxxx(1x)lny(1y)lnx(*)(1)若0xy1,则(*)式lntlnylnx,t(0,1) ,故令f(t)1t1y1x只须证明f(t)在(0,1)上单增即可得证
为此,f(t)tlntt1从而令g(t)tlntt1,t(0,1),若证明了g(t),t(0,1),2t(1t)在(0,1)上g(t)0,则f(t)在(0,1)上单增,进一步,g(t)lnt,t(0,1)故
g(t)0,t(0,1),又g(t)在(0,)上连续,g(t)g(1),t(0,1),又g(1)0,
所以
t(0,1),g(t)0t(0,1),f(t)0,即f(t)在(0,1)上单增,故得证
(2)yx1,则(*)式故,令(t)lnylnx y1x1lnt,t(1,)若证明(t)在(0,)上单减,则得证 t1为此,求(t)tlntt1,t(1,),令(t)tlntt1,t(1,),若能证
t(t1)2明(t)0,t(1,)则由(t)0,t(1,)知(t)在(1,)上单减
进一步,(t)lnt,t(1,),(t)0,t(1,),(t)在(1,)上单减,又(t)在(1,)上连续,t(1,)时(t)(1)0,(t)0,t(1,),即
(t)在(0,)上单减,则得证 四、解:记
2I0dd2cos02cos2ddd2cos02cos02cos(0114dd)d42cos2cos4cos24cos200
令ttan2,则
2dt2t,sin1t21t212dt(1t2)dt
I484222t3(t1)10t21t03(0)1t22arctantd
11)dtd(t)2tt I881103(t203(t)242)102tt1令ut,t(0,)u(,)
t(13u)du8du44I8222243u43u30311(u)2
444dx42arctanx|023301x3d(五、证明:
若不然,设M0,s.t0f(x)Mf(x),x(a,b],考虑区间,(a,a的f(x),记Amax|f(x)|,x(a,b](a,a[a,b]1]上2M1] 2Mf(1),其中a1x 2f(2)1同理|f(1)||f(1)f(a)||f(2)||2a|Mf(2) 2M2f(2)即|f(x)|,依上述操作重复进行n次,得 22f(n)|f(x)|,其中an1x
2n1Ax(a,a],有|f(x)|n,令n得|f(x)|0,又|f(x)|0
2M21|f(x)|0,x(a,a](a,b],即
2M1i1if(x)0,x(a,a](a,b],由此易知x(a,a](a,b]
2M2M2M|f(x)||f(x)f(a)||f(1)||xa|Mf(1)(xa)上f(x)0,f(x)0,x(a,b],这与f(x)0,x(a,b]矛盾 另证:f(x)0,x(a,b]知x0(a,b],s.tf(x0)0
记x1inf{x|(x,x0)上f(x)0},由连续函数局部保号性,只能f(x1)0,从而
(x1,x0)同f(x)0,令g(x)lnf(x),x(x1,x0),则 |g(x)|f(x)M f(x)故g(x)在有限区间(x1,x0)上有界,但
limf(x)f(x1)0
xx10从而limg(x)矛盾,故知不存在M,使得上述结论成立
xx10六、旋转后形成的V为球体:x2y2z21;锥体:x2y2z0
z1;及平面:2所围成(由于我们知道,以(0,0,0)为顶点的锥体为x2y2ztan,从而旋转后的锥体顶点在(0,0,1)处)记IV2zx2y2dv,arctan1 2用球坐标变换公式进行计算,将V看成两部分,如图所示(略)
IV222zxy122dv2212sincosd002rcos2drsindrrsin0122d02d002rcos2rsindr rsin75212sincos2(2)cosdrdr2(2)cosd002r2dr七、解:(Lagrange乘数法)
x2建立目标函数,设(x,y,z)为y2z21上的动点,它到3x4y12z226(3x4y12z228)2(3x4y12z228)2的距离之平方为d(x,y,z) 22223412132设
x21x2222L(x,y,z)d(x,y,z)(yz1)2(3x4y12z228)(y2z21)9613962则
22xL(3x4y12z228)3(1)x13296L2(3x4y12z228)42y(2)2y13L2(3x4y12z228)122z(3)z1322Lxy2z21(4)96,
,)(,令
(LLLL,xyz0,0(1)x(2)y(3)z得
2x2(3x4y12z228)(3x4y12z)2(y2z2)0 21396x2y2z21代入并化简为 96(3x4y12z228)(3x4y12z)1320(5)
x72y1313yy代入(4)并最终解出得(x,y,z)(9,,)or(9,,)
8888z3y1313将此代入目标函数求得d(x,y,z)d(9,,)13,d(x,y,z)d(9,,)20
8888比较易得dmax20,dmin13
1313故最远点为(9,,),最近点为(9,,)
8888八、证明:
f(2x)f(x)f(2x)f(0)f(x)f(0)2(*)
x2x0x0f(x)f(0)f(2x)f(0)若f(0)存在,则必有lim存在,从而lim存在,均为f(0),
x0x0x02x0在(*)式中令x0则A2f(0)f(0)f(0)A,故只须证明f(0)存在即可,如下,将已知式看作递推式,对每一个kN,有下式成立
xxf(k)f(k1)2lim2A,令k1,2,,n1,得
x0x2k1limk0x0n1f(xxx)f()f(x)f()n1nA1112k2k12,即limA() k1nx0x2x242k0x111)Ax()(x),令n,得 nn2242故f(x)f(f(x)f(0)Ax(x)f(0)A
九、证明:(拟合法)
yyf(0)f(0)limf(0)2dxlimdx 222y0y0xyxy1111转化为证limy[f(x)f(0)]dx0,即: 22y0xy1y[f(x)f(0)]dx| 22xy1110,10,当|y0|1即0y1时,|取Mmax|f(x)|,对于充分小的h0,有|f(x)f(0)|[1,1]y[f(x)f(0)]y[f(x)f(0)]|dx||dx||2222xyxy11h11hh|hy[f(x)f(0)]dx||I1||I2||I3|22xyh,固定h 3y[f(x)f(0)]dx|x2y2
|I1|y|h1y[f(x)f(0)],当时,有 0y|I|dx|yM11223M13M1xyh|I2||hy[f(x)f(0)]y[f(x)f(0)]dx|dx22x2y2xyhydx22xy3113ydx22xy3h1h
|I3|y|hf(x)f(0)|I|,当时,有 0ydx|yM32233M2x综上,0,取0ymax(1,13M13M2,)
|y[f(x)f(0)]dx||I||I||I| 12322xy3331yf(x)dxf(0)
y0x2y211lim
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- howto234.com 版权所有 湘ICP备2022005869号-3
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务