您好,欢迎来到好土汽车网。
搜索
您的当前位置:首页5-2-2直线平行的条件教案

5-2-2直线平行的条件教案

来源:好土汽车网

5.2.2  直线平行的条件(第1课时)

直线平行的条件()

 

    教学目标

    1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.

    2.经历探究直线平行的条件的过程,掌握直线平行的条件,领悟归纳和转化的数学思想方法.

    重点、难点

    探索并掌握直线平行的条件是本课的重点也是难点.

    教学过程

    一、复习引入

    1.填空:经过直线外一点,________与这条直线平行.

    2.画图:已知直线AB,P在直线AB,用直尺和三角尺画过点P的直线CD,使CDAB.

    3.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用.

    学生讲出是为画PHF,使所画的角与BGF相等.

    教师指出既然两个角相等与两条直线平行能联系起来, 那么这两个角具有什么样的位置关系,我们是否得到了一个判定两直线平行的方法?这是本课要研究的内容之一.

    二、探索直线平行的条件

1.画出课本图5.2-5的简化图形,分析12的位置关系.

    (1)让学生先描述12的方位.

    (2)教师指出像12这样分别位于直线CDAB的下方,又在直线EF的右侧, 也就是位置相同的两个角叫做同位角.

    (3)让学生识别图中其他的同位角,并标记出它们,要求正确而又不遗漏.

    (4)教师强调:同位角是具有特殊位置关系的两个角, 它不同于对顶角和邻补角.同位角都有一条边在截线EF.

    2.归纳利用同位角判定两条直线平行的方法.

    (1) 学生根据同位角的意义以及平推三角尺画出平行线活动中叙述判定两条直线平行的方法.

    教师引导学生正确表达平行线的判定方法1,并板书.

    方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

    简单记为:同位角相等,两条直线平行.

    (2)教师引导学生,结合图形用符号语言表达两直线平行的判定方法1: 如果1=2,那么ABCD.

    教师强调判定两直线平行方法1的条件中有两层意思:第一层这两个角是这两条被第三条直线所截而成的一对同位角;第二层这两个角相等两者缺一不可.

    (3)简单应用.

    教师表演木工用每尺画平行线过程,让学生说出用角尺画平行线的道理(结合P155.2-7).

    教师规范说理过程:因为DCBFEB是直线CDEFAB所截而成的同位角,而且DCB=FEB,即同位角相等,根据直线平行判定方法,从而CDEF.

3.利用教具模型认识内错角和同旁内角.

    (1)教师展示教具模型,并在黑板上画出右图图型,指出在直线ab被直线c所截成的角中,12是同位角,2324虽然不是同位角, 但是它们又是具有某种位置关系的两个角,大家能叙述23有怎样的位置关系?24?

    教师引导学生正确地叙述,23位在直线a,b的内部,又分别位于直线c的两侧,24位在直线a,b内部,都在直线c的右侧(同侧).

    (2)教师转动直线a或者直线b,再问学生23,24 的度数是否发生变化?它们之间的位置是否发生改变?

    学生回答后,教师指出像23这样的两个角叫做内错角,24这样的两个角叫做同旁内角.

    (3)让学生识别图中其他的内错角和同旁内角,标记出它们.

    (4)学生概括由直线ab被直线c所截成的八个角中有四对的同位角, 两对的内错角、两对的同旁内角.

    4.探索两条直线平行的其它方法

    (1)演示教具,使学生直觉当内错角相等时,两条直线平行.

    (2)让学生思考:为什么内错角相等时,两条直线平行?你能用学过的两直线平行的判定方法1来说明吗?

    学生若有困难,教师可提示学生通过内错角和同位角之间的关系把条件2=3转化为1=2.

    教师规范说理过程:因为2=3,3=1(对顶角相等),所以1=2, 即同位角相等,因此ab.

    (3)师生归纳判定两条直线平行的方法2,教师板书:

    两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

    简单记为:内错角相等,两直线平行.

    教师引导学生结合图形用符号语言表达方法2:如果2=3,那么ab.

    (4)讨论:同旁内角数量上满足什么关系时,两直线平行?

    学生猜想,可借助于教具.先排除相等,4是锐角时,2是钝角才有可能使ab,进一步观察发现:如果同旁内角互补时,两条直线平行,即如果2+4=180 °,那么ab.

    学生利用平行判定方法1或方法2来说明猜想正确.

    教师根据学生说理,再准确地板书:

    因为4+2=180°,4+1=180°,根据同角的补角相等,所以有2=1, 即同位角相等,从而ab.

    因为4+2=180°,4+3=180°,根据同角的补角相等,所以有3=2, 即内错角相等,从而ab.

    师生归纳两条直线平行的判定方法3,教师板书:

    两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.

    简单记为:同旁内角互补,两直线平行.

    综合图形,用符号语言表达:如果4+2=180°,那么ab.

    三、巩固练习

    课本P17练习.

    四、作业

    1.作业P18.1,2,3,4.

    2.补充设计:

一、判断题

1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.(   )

2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.(   )

二、填空

1.如图1,如果3=7,______,那么______,理由是__________;如果5=3,或笔________,那么________, 理由是______________; 如果2+ 5= ______ 或者_______,那么ab,理由是__________.

 

       (1)                       (2)                   (3)(

2.如图2,2=6,_____________,如果3+4+5+6=180°, 那么___________,如果9=_____,那么ADBC;如果9=_____,那么ABCD.

三、选择题

1.如图3所示,下列条件中,不能判定ABCD的是(   )

   A.ABEF,CDEF        B.5=A;     C.ABC+BCD=180°    D.2=3

2.右图,由图和已知条件,下列判断中正确的是(   )

   A.1=6,ABFG;                   

B.1+2=6+7,CEEI

   C.1+2+3+5=180°,CEFI;     

D.5=4,ABFG

四、已知直线ab被直线c所截,1+2=180°,试判断直线ab的位置关系,并说明理由.

答案:

一、1.  2.  

二、1.1=52=64=8,ab,同位角相等,两直线平行,2=8,ab,内错角相等,两直线平行,180°,3+8=180°,同旁内角互补,两条直线平行.  2.BCAD,ADBC,BAD,BCD  

三、1.D  2.D  四、ab,可以用三种平行线判定方法加以说明,其一:因为1+2=180°,3=1(对顶角相等)所以2+3=180°,所以ab(同旁内角互补,两直线平行),其他略

Copyright © 2019- howto234.com 版权所有 湘ICP备2022005869号-3

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务